Internet Traffic Mid-term Forecasting: A Pragmatic Approach Using Statistical Analysis Tools
نویسندگان
چکیده
Network planning is usually based on long-term trends and forecasts of Internet traffic. However, between two large updates, telecommunication operators deal with resource allocation in contracts depending on the mid-term evolution of their own traffic. In this paper, we develop a methodology to forecast the fluctuations of Internet traffic in an international IP transit network. We do not work on traffic demands which can not be easily measured in a large network. Instead, we use link counts which are much simpler to obtain. If needed, the origin-destination demands are estimated a posteriori through traffic matrix inference techniques. We analyze link counts stemming from France Telecom IP international transit network at the two hours time scale over nineteen weeks and produce forecasts for five weeks (mid-term). Our methodology relies on Principal Component Analysis and time series modeling taking into account the strain of cycles. We show that five components represent 64% of the traffic total variance and that these components are quite stable over time. This stability allows us to develop a method that produce forecasts automatically without any model to fit.
منابع مشابه
A statistical approach to classify Skype traffic
Abstract- Skype is one of the most powerful and high-quality chat tools that allows its users to use of many services such as: transferring audio, sending messages, video conferencing and audio for free. Skype traffic has a lot of Internet traffic. Hence, Internet service providers need to identify traffic to do the quality of service and network management. On the other hand, Skype developers ...
متن کاملShort Term Load Forecasting by Using ESN Neural Network Hamedan Province Case Study
Abstract Forecasting electrical energy demand and consumption is one of the important decision-making tools in distributing companies for making contracts scheduling and purchasing electrical energy. This paper studies load consumption modeling in Hamedan city province distribution network by applying ESN neural network. Weather forecasting data such as minimum day temperature, average day temp...
متن کاملShort and Mid-Term Wind Power Plants Forecasting With ANN
In recent years, wind energy has a remarkable growth in the world, but one of the important problems of power generated from wind is its uncertainty and corresponding power. For solving this problem, some approaches have been presented. Recently, the Artificial Neural Networks (ANN) as a heuristic method has more applications for this propose. In this paper, short-term (1 hour) and mid-term (24...
متن کاملFailure Archaeology and Anomaly Detection for Mid-Sized Internet Sites
Mid-sized Internet sites have enough complexity to be failure prone, but do not have enough resources to create the resilient architectures used by large Internet sites. In this paper, we characterize failures seen in mid-sized Internet sites and evaluate the use of (i) visualization techniques to assist humans in pinpointing failures and (ii) statistical learning techniques for automated failu...
متن کاملStatistical Traffic State Analysis in Large-scale Transportation Networks Using Locality-Preserving Non-negative Matrix Factorization
Statistical traffic data analysis is a hot topic in traffic management and control. In this field, current research progresses focus on analyzing traffic flows of individual links or local regions in a transportation network. Less attention are paid to the global view of traffic states over the entire network, which is important for modeling large-scale traffic scenes. Our aim is precisely to p...
متن کامل